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Abstract—COVID-19 pandemic has led to drastic changes in 

human life. ICU admission became very important decision to 
make, especially in hospitals where the cases surge and beds are 
limited. Hence, the latest technologies should be able to support and 
facilitate the combat in the ongoing situation. Artificial intelligence 
(AI) is one of the solutions. This paper uses decision tree as the AI 
agent. The decision tree was implemented using Classification and 
Regression Tree (CART) algorithm which uses Gini impurity and 
information gain. The model performance evaluates to 61.8% F1-
score with 72.8% recall and 53.6% precision score. The author 
found that the decision tree was not effective enough in this 
problem since the tree has a high bias. However, this may be due to 
the fact that the data are imbalanced. Therefore, making pattern 
recognition task harder. 

Keywords—covid-19, decision tree, intensive care, health 
preconditions 

I.   INTRODUCTION 

The outbreak of Coronavirus Disease (COVID-19) in 
December 2019 has put humans in a pandemic again since the 
Spanish Flu. COVID-19 is an infectious disease caused by the 
SARS-CoV-2 virus. As of December 2021, more than 267 
million cases and about 5 million deaths have been reported [1]. 

According to World Health Organization (WHO), the 
majority of people can recover from the disease without any 
special treatment [2]. However, some groups are more prone to 
it in which they will potentially develop an illness that may 
require intensive care [2]. 

COVID-19 patients with severe symptoms are at high risk for 
health deterioration. Thus, intensive care unit (ICU) admission 
should be prioritized for them [3]. However, ICU treatments 
also depend on the hospital availability in medical workers and 
beds. Hence, ICU should be optimized and prioritized for those 
who need them. 

While dealing with COVID-19, ICU admission is not an easy 
task, especially when the cases surge. Crowded patients, 
shortage of healthcare workers, and chaotic situations make 
admission much more difficult. That is because the healthcare 
staff should compare new arriving patients' preconditions data 
and decide the ICU prioritization in no time. 

In this case, artificial intelligence (AI) can help the medical 
staff determine which patients need to have intensive care 
immediately. AI is commonly used to diagnose, treat, and 
predict outcomes in many clinical scenarios [4]. One of the AI 
technology in decision-making is a decision tree. 

A decision tree is a predictive model which can solve both 
classification and regression tasks [5]. This paper aims to 
research the applicability of decision trees in ICU admission. 
The goal is to make a tree that can help medical workers 
distinguish who should be prioritized. The model should be 
capable of sorting the patient data from most prioritized to less 
prioritized. 

The writer uses the Classification and Regression Tree 
(CART) algorithm. It has cheaper computation compared to 
other methods because it uses the Gini index rather than entropy 
which contains a logarithm.  

Similar research had been conducted by Cotoy, et al. [6]. 
They use an artificial neural network (ANN) to predict ICU care 
requirements in COVID-19.  The model successfully performs 
at 78% recall and 80% precision which translates to 79% F1-
score. 

The contrast to the existing paper is that this study uses 
classical machine learning (ML) approach rather than deep 
learning. The purpose of this research is to add more references 
to the existing models because the classical ML is 
computationally and financially cheaper than the deep learning 
approach [7]. 

II.  METHODOLOGY 

A. Tools 

In this study, the writer uses Python programming language 
with its libraries, namely Pandas, NumPy, Matplotlib, SciKit 
Learn, Imblearn, and the writer’s own decision tree classifier 
module. 

B. Data Descriptions 

The data is retrieved from Kaggle Open-Source Datasets, 
titled “COVID-19 Patient Pre-condition Dataset” [8]. The 
original data is obtained from Mexican Official Government [9]. 
Last update of the data is 22nd July 2020. 

The dataset contains 566,602 rows and 23 columns. The 
columns details are: 

1. Id : patient’s identifier (object), 
2. Sex: patient’s gender (1: female, 2: male), 
3. Patient type: patient’s care status (1: outpatient, 2: 

inpatient), 
4. Entry date: date arrival to the hospital (datetime), 
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5. Date symptoms: date when the COVID-19 symptoms 
began (datetime), 

6. Date died: patient’s die date (datetime), 
7. Intubed: whether the patient is intubated or not (cyn), 
8. Pneumonia: whether the patient has pneumonia or not 

(cyn), 
9. Age: patient’s age (numerical), 
10. Pregnancy: whether the patient is pregnant or not (cyn), 
11. Diabetes: whether the patient has diabetes or not (cyn), 
12. COPD: whether the patient has chronic obstructive 

pulmonary disease or not (cyn), 
13. Asthma: whether the patient has asthma or not (cyn), 
14. Inmsupr: whether the patient has immunosuppression or 

not (cyn), 
15. Hypertension: whether the patient has hypertension or 

not (cyn), 
16. Other disease: whether the patient has other disease or not 

(cyn), 
17. Cardiovascular: whether the patient has cardiovascular 

disease or not (cyn), 
18. Obesity: whether the patient is obese or not (cyn), 
19. Renal chronic: whether the patient has chronic kidney 

disease or not (cyn), 
20. Tobacco: whether the patient does tobacco or not (cyn), 
21. Contact other covid: whether the patient had contact with 

a person that has COVID-19 or not (cyn), 
22. Covid res: patient’s COVID-19 test result (1: positive, 2: 

negative, 3: awaiting results), 
23. ICU: whether the patient needs ICU admission or not 

(cyn). 
The cyn means categorical yes or no. The labels provided for 
that category are 1 for yes, 2 for no, and 97, 98, 99 for missing 
values. Our model’s target will be the “ICU” column. 

C. Data Preprocessing 
Data preprocessing is done through several steps. The author 

only takes the necessary data which later contains 67,414 rows 
and 15 columns. The detailed preprocessing steps are listed and 
explained below. 

1. Convert 97, 98, 99 labelled data as np.nan so Pandas can 
recognize null data through pd.DataFrame.isnull. 

2. Change all “2” values to “0” as it is the more popular 
convention.  

3. ICU preprocessing: since the data is imbalanced (or 
skewed), the author changes the ICU column value to 
prioritized “1” if the patient has a valid date died. The 
valid date died can be interpreted that the patient has died 
while the invalid date died can be thought as the patient 
has not died. 

4. Create a new column named days after symptoms which 
is created from subtracting date symptoms column 
to entry date column. 

5. Since we want to predict ICU from COVID-19 patients, 
we only take patients that has “inpatient” status and has 
tested positive for COVID-19. After that, drop the patient 
type and covid res column. 

6. Column id, date died, entry date, and date symptoms are 
dropped because they are insignificant to the target 

column. 
7. Column pregnancy, other disease, and contact other 

covid are dropped because they have many missing 
values. 

8. The rest missing values is dropped row-wise using 
pd.Dataframe.dropna. 

9. Cast the categorical column to object and numerical 
column to either integer or float. This step is needed 
because the tree is modelled to recognize categorical 
value as object and numerical value as either float or int. 

10. Lastly, data are split to 80% for training and 20% for 
testing/validation data. The training data is resampled to 
a 1:1 ratio in the target column using Borderline SMOTE 
technique because the data is skewed. The validation data 
are left as they are. 

D. Decision Tree Implementation 

The tree used in this problem is binary decision tree since all 
categorical columns have only two classes. Before going into 
the decision tree algorithm, the readers should know these 
following terminologies. 

1. Node: the three different types are root node, internal 
nodes, and leaf nodes.  

2. Branch: represent edge that connects two nodes. 

 
Fig. 2.1 Tree nodes visualization [10] 

3. Level: tree location relative to the root node. In this 
paper, the root node has a level of 1. 

4. Depth: maximum level of a tree. 

 
Fig. 2.2 Tree level visualization [11] 
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5. Parent node: node which has one lower level than certain 
node, e.g., in figure 2, node d is a parent of node g. 

6. Child node: node which has one higher level than certain 
node, e.g., in figure 2, node m is a child of node k. 

7. Sibling node: node which has same level as certain node, 
e.g., in figure 2, node e is a sibling of node f. 

8. Subtree: trees are recursive. It is possible to contain a tree 
in a tree, this is called subtree. In figure 3, subtree is the 
circled area. 

 
Fig. 2.3 Subtree visualization [11] 

9. Pruning: reducing size of a tree by removing a subtree or 
several subtrees. This technique is usually used to avoid 
overfitting in training data. 

CART Algorithm 
CART stands for Classification and Regression Trees. It is 

one of many algorithms to build the decision tree. The pruning 
type used in this algorithm is pre-pruning using a single-pass 
algorithm [11]. 

The algorithm will start from the root node and will grow 
recursively until it fulfills the stopping criteria and produce leaf 
nodes. In this study, the stopping criteria is either when the 
information gain is less than or equal the tolerance or when the 
maximum depth is reached. If it is not specified, the default 
parameter is when the information gain is zero. 

In each decision node, the data will be split based on a true or 
false question. To generate the question, the tree will iterate 
through all feature columns. Then, in each column, all unique 
values will be tested as threshold.  

For categorical values, the question will compare with the “=” 
symbol and for numerical values, the question will compare with 
the “≥” symbol. For instance, “Is age ≥ 32?” (numerical question 
with threshold 32) and “Is the intubated = 1?” (categorical 
question with threshold 1).  

The question generated will partition the data into true and 
false groups. The goal of this step is to filter the data until it is 
less mixed, i.e., maximum data impurity reduction. The impurity 
in each node is measured with Gini index which is defined in 
node t as 

𝑖(𝑡) =  1 − Σ௜  𝑝ଶ(𝑗|𝑡)       (1) 
where 𝑗 is the class category and 𝑝(𝑗|𝑡) is the probability of class 
j in node t. 

 
 
 

The tree will also weigh the question by metrics called 
information gain to see if the question is significant enough in 
reducing the impurity. Information gain at node t is defined as 

Δ𝑖(𝑠, 𝑡) = 𝑖(𝑡) − 𝑝் ⋅ 𝑖(𝑡்) − 𝑝ி ⋅ 𝑖(𝑡ி)           (2) 
where Δ𝑖(𝑠, 𝑡) is the decrease of impurity with split s, 𝑝் and 𝑝ி  
are the probabilities of data going to true partition (true child 
node) or false partition (false child node), i(𝑡்) and 𝑖(𝑡ி) are 
Gini impurity at node 𝑡் and 𝑡ி  respectively.  

 
Fig. 2.4 CART algorithm flowchart 

In this implementation, the root node and internal node class 
type is a Decision Node, while leaf node has its own class type, 
named Leaf. The decision node contains the type of question 
(categorical or numerical), the question itself, and two children. 
On the other side, the leaf contains the probability of each 
classification to appear with certain feature inputs. 

To predict the target, the tree will receive several feature 
inputs and the tree will go through branches based on inputs until 
it ends in a leaf node. Because the leaf node contains the 
probability, it can output the probability of a class and it can also 
determine which class has highest probability. The probability 
output can be sorted descending by setting prioritized “1” class 
in key parameter to help in solving this ICU admission problem. 

E. Decision Tree Classifier Module 

This section will explain more detailed specifications of the 
decision tree classifier (DTC) module that the writer created. 
The detailed descriptions of the class are as follows. 

1. DecisionTreeClassifier 
This is the main class of the module. The properties of 
this class are root (class type: DecisionNode), depth, and 
col_types to store all feature types. The methods are: 
a. grow_tree: helper function to fit the data inputs and 

grow the tree. This method works recursively and 
the splitting data process happens here. 

b. fit: to build a tree based on training data. This 
method will combine the features and target and 
transform it to np.array. This method will also 
extract the column types (categorical/numerical). 
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c. predict: this method receives feature data. Users can 
specify the “key” argument if they want the output 
is in the form of probability (floating point). 
Otherwise, it will output the class category that has 
the highest probability. 

d. print_tree: this method will output the tree structure 
that has been fitted. 

2. DecisionNode 
This class will play a role as an internal node. The 
properties are question, information gain, true child, and 
false child. In the output, the true child is a left child and 
the false child is a right child. The methods are: 
a. classify: to predict one row at a time. This method 

will output the class probability in Python dictionary 
data structure (or hash table). 

b. print_node: helper function to print the tree. 
3. Leaf 

This class has only one property and no methods. The 
property is the target classes probability. 

4. Question 
The properties of this class are variable name, column 
input, threshold, and isnumeric. The method is 
a. match: to pass the data into either true or false 

branch. 
Other functions are not stated to reduce redundancy. 

Limitations in The DTC Module 
Below are some limitations to the DTC that was created. 
1. The DTC can only split the data into two parts (binary). 

This may cause the model works poorly on 
multiclassification problem. 

2. The DTC only accepts pd.DataFrame type. The user will 
need to transform the data to pd.DataFrame type before 
fitting it to the model. 

3. The user needs to specify each column type explicitly, 
i.e., casting to object for categorical columns and casting 
to integer or float for numerical columns. 

4. The DTC feature is not as complete as SciKit Learn’s 
Decision Tree Classifier feature as this module only 
facilitate maximum tree depth and information gain 
tolerance as stopping criterion. 

F. Evaluation Metrics  

To evaluate model performance, the writer uses F1-score 
since target data are imbalanced or skewed. The F1-score is 
defined as 

Precision =
୘୔

୘୔ା୊୔
                              (3) 

Recall =
୘୔

୘୔ା୊୒
         (4) 

Fଵ = 2 ×
୔୰ୣୡ୧ୱ୧୭୬ × ୖୣୡୟ୪୪

୔୰ୣୡ୧ୱ୧୭୬ ା ୖୣୡୟ୪୪
=

ଶ୘୔

ଶ୘୔ା୊୔ା୊୒
          (5) 

where TP is true positive, TN is true negative, FP is false 
positive, and FN is false negative. This metric will be tested in 
validation data after fitting to the decision tree model. 

III.   RESULTS AND DISCUSSIONS 

Before training data, the author tried several combinations of 
preprocessing techniques to see which combination gave the 
best result. The preprocessing written in II. B. are the ones that 
are implemented to the data. 

Data preprocessing impacts on training result 
The data preprocessing impact can be summarized as follows. 

ICU 
Preprocessing 

Resampling 
Missing 
Handler 

F1-score 

Yes Yes Drop 61.8% 
Yes Yes Impute 61.6% 
Yes No Drop 49.6% 
Yes No Impute 49.2% 
No No Drop 28.9% 
No No Impute 29.5% 
No Yes Drop 23.6% 
No Yes Impute 23.6% 

Table 3.1 Data preprocessing impact to F1-score in test data  

From table 3.1, it can be inferred that the most significant 
preprocessing is step three, the ICU preprocessing (refer to II. 
B.). This is because the preprocessing helps to increase the 
minority labels in the target column. Although this process 
manipulated the target data, it is reasonable to say that the people 
who already died and not admitted to the ICU should have been 
cared in the ICU. 

 
Fig. 3.1 Before ICU preprocessing 

 
Fig. 3.2 After ICU preprocessing 

Figure 3.1 and figure 3.2 show that the target ratio changed from 
10:1 to 2:1. This will help the model to recognize the pattern. 

The second most significant preprocess is resampling the data 
with Borderline SMOTE. The data are resampled so the target 
ratio changed from 2:1 to 1:1. The final ratio is determined 
automatically from default parameter in Imblearn library. 
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Fig 3.4 Final tree structure

Additionally, in handling missing data, the writer tried to use 
imputer by filling the missing data with the most frequent value. 
The most frequent method was chosen because the majority data 
are categorical and hence, discrete. However, the author found 
that dropping the missing values gave better result than imputing 
them. Therefore, after applying the best preprocessing 
combination, the writer successfully increased F1-score by 
38.2%. 

Model Evaluation  
The first trial of training resulted in overfitting because the 

tree performed well in training data, but performed poorly in test 
data. 

 Training Data Validation Data 
Precision 89.9% 51.6% 

Recall 87.8% 49.3% 
F1-Score 88.8% 54.1% 

Table 3.2 Evaluation scores with default parameter 

To overcome the overfitting problem, the author pruned the 
tree by testing several tree maximum depths to determine which 
one is optimum for the validation data. The results are as 
follows. 
 

Maximum Tree Depth F1-score 
2 60.8% 
3 60.4% 
4 61.8% 
5 59.8% 
6 60.7% 
7 60.5% 
8 60.2% 
9 60.2% 
10 60.0% 
11 59.1% 
12 59.2% 
13 58.8% 
14 58.2% 
15 58.0% 

Table 3.3 Max tree depth variations and F1-score on test data 

From table 3.3, we can see the best validation F1-score is 
61.8% with a maximum tree depth of 4. The statistics are: 

 Training Data Validation Data 
Precision 62.0% 53.6% 

Recall 67.0% 72.8% 
F1-Score 64.4% 61.8% 

Table 3.4 Evaluation scores with max tree depth = 4 

By comparing the statistics from table 3.4, it is safe to say that 
the tree did not overfit the training data. The reason is that the 
gap between F1-score training data and F1-score validation data 
only differs about 2.6%. It is due to the pruning done to the tree 
that avoids overfitting.  

Having only 61.8% F1-score, the decision tree may not be a 
good solution to help medical staff with ICU admissions. This 
is because the model will tend to give errors rather than the 
desired outcome. To see the problem, the author also provides 
confusion matrix plot as follows. 

 
Fig 3.5 Confusion matrix for validation data 

Remember that the prioritized patient is labeled as 1 (positive) 
while non-prioritized is labeled as 0 (negative). From figure 3.5 
plot, we can see that the false positive has a relatively high value 
(approx. 24.8% of the test data). This fact can also be seen 
through the low precision score.  

With current performance, the decision tree can misclassify 
labels and prioritize people who actually do not need an ICU 
admission. This is not what we wanted since it will waste bed 
occupancies in the hospitals. 
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On the other side, if we look at the tree structure in figure 3.4, 
several questions are asked repeatedly. The author presumes that 
this may be one of the problems that caused the poor tree 
performance. The tree does not consider all features, whereas in 
fact, the COVID-19 patient’s symptoms severity and health 
condition are dependent on comorbid, such as hypertension and 
cardiovascular disease [12]. Hence, affecting the needs of 
intensive care. 

Furthermore, when inspecting the right subtree of node “Is 
age ≥ 52?”, we see that the leaves tend to predict patients as the 
prioritized ones (higher 1 class probability). It turns out that 
most of the tree false positive values are coming from these. 
There are 3,133 rows of not intubated patients and has the age 
above 52, which should be predicted false, but predicted true 
(prioritized) by the tree. Therefore, this shows that the decision 
tree has a high bias to such situation. 

Besides that, the decision tree root has very low information 
gain on the data (approximately 0.02). This means that it is hard 
for the tree to filter the data because the Gini impurity is high. 
One possible factor that caused this is target may need to be 
decided with several questions combined at the same time, not 
one question at a time like the tree did.  

IV.   CONCLUSION 

To conclude, the tree has 61.8% F1-score with 72.8% recall 
and 53.6% precision score. Compared to the existing method 
from Cotoy, et al., the tree F1-score differs by 17.2% with the 
ANN method being the highest of the two. It shows that the 
decision tree may not be the best solution to implement in ICU 
admission task, although it depends on the performance error 
tolerance. 

Nevertheless, further research can be done with different 
preprocessing, different data, or different models. In this paper, 
the majority of columns of the data are categorical. Therefore, 
more data with numerical values can be collected and tested. 
Specified data such as patients’ blood pressure, cholesterol, or 
oxygen rate may correlate more to ICU admission requirements. 
Additionally, the target does not have to be categorical. It can be 
numerical, but a certain threshold should be determined. 
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