
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

Decision Tree Modelling with CART Algorithm to Predict
Potential Needs of Intensive Care for COVID-19 Patients Based

on Their Preconditions

Maria Khelli - 135201151
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

113520115@std.stei.itb.ac.id

Abstract—COVID-19 pandemic has led to drastic changes in

human life. ICU admission became very important decision to
make, especially in hospitals where the cases surge and beds are
limited. Hence, the latest technologies should be able to support and
facilitate the combat in the ongoing situation. Artificial intelligence
(AI) is one of the solutions. This paper uses decision tree as the AI
agent. The decision tree was implemented using Classification and
Regression Tree (CART) algorithm which uses Gini impurity and
information gain. The model performance evaluates to 61.8% F1-
score with 72.8% recall and 53.6% precision score. The author
found that the decision tree was not effective enough in this
problem since the tree has a high bias. However, this may be due to
the fact that the data are imbalanced. Therefore, making pattern
recognition task harder.

Keywords—covid-19, decision tree, intensive care, health
preconditions

I. INTRODUCTION

The outbreak of Coronavirus Disease (COVID-19) in
December 2019 has put humans in a pandemic again since the
Spanish Flu. COVID-19 is an infectious disease caused by the
SARS-CoV-2 virus. As of December 2021, more than 267
million cases and about 5 million deaths have been reported [1].

According to World Health Organization (WHO), the
majority of people can recover from the disease without any
special treatment [2]. However, some groups are more prone to
it in which they will potentially develop an illness that may
require intensive care [2].

COVID-19 patients with severe symptoms are at high risk for
health deterioration. Thus, intensive care unit (ICU) admission
should be prioritized for them [3]. However, ICU treatments
also depend on the hospital availability in medical workers and
beds. Hence, ICU should be optimized and prioritized for those
who need them.

While dealing with COVID-19, ICU admission is not an easy
task, especially when the cases surge. Crowded patients,
shortage of healthcare workers, and chaotic situations make
admission much more difficult. That is because the healthcare
staff should compare new arriving patients' preconditions data
and decide the ICU prioritization in no time.

In this case, artificial intelligence (AI) can help the medical
staff determine which patients need to have intensive care
immediately. AI is commonly used to diagnose, treat, and
predict outcomes in many clinical scenarios [4]. One of the AI
technology in decision-making is a decision tree.

A decision tree is a predictive model which can solve both
classification and regression tasks [5]. This paper aims to
research the applicability of decision trees in ICU admission.
The goal is to make a tree that can help medical workers
distinguish who should be prioritized. The model should be
capable of sorting the patient data from most prioritized to less
prioritized.

The writer uses the Classification and Regression Tree
(CART) algorithm. It has cheaper computation compared to
other methods because it uses the Gini index rather than entropy
which contains a logarithm.

Similar research had been conducted by Cotoy, et al. [6].
They use an artificial neural network (ANN) to predict ICU care
requirements in COVID-19. The model successfully performs
at 78% recall and 80% precision which translates to 79% F1-
score.

The contrast to the existing paper is that this study uses
classical machine learning (ML) approach rather than deep
learning. The purpose of this research is to add more references
to the existing models because the classical ML is
computationally and financially cheaper than the deep learning
approach [7].

II. METHODOLOGY

A. Tools

In this study, the writer uses Python programming language
with its libraries, namely Pandas, NumPy, Matplotlib, SciKit
Learn, Imblearn, and the writer’s own decision tree classifier
module.

B. Data Descriptions

The data is retrieved from Kaggle Open-Source Datasets,
titled “COVID-19 Patient Pre-condition Dataset” [8]. The
original data is obtained from Mexican Official Government [9].
Last update of the data is 22nd July 2020.

The dataset contains 566,602 rows and 23 columns. The
columns details are:

1. Id : patient’s identifier (object),
2. Sex: patient’s gender (1: female, 2: male),
3. Patient type: patient’s care status (1: outpatient, 2:

inpatient),
4. Entry date: date arrival to the hospital (datetime),

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

5. Date symptoms: date when the COVID-19 symptoms
began (datetime),

6. Date died: patient’s die date (datetime),
7. Intubed: whether the patient is intubated or not (cyn),
8. Pneumonia: whether the patient has pneumonia or not

(cyn),
9. Age: patient’s age (numerical),
10. Pregnancy: whether the patient is pregnant or not (cyn),
11. Diabetes: whether the patient has diabetes or not (cyn),
12. COPD: whether the patient has chronic obstructive

pulmonary disease or not (cyn),
13. Asthma: whether the patient has asthma or not (cyn),
14. Inmsupr: whether the patient has immunosuppression or

not (cyn),
15. Hypertension: whether the patient has hypertension or

not (cyn),
16. Other disease: whether the patient has other disease or not

(cyn),
17. Cardiovascular: whether the patient has cardiovascular

disease or not (cyn),
18. Obesity: whether the patient is obese or not (cyn),
19. Renal chronic: whether the patient has chronic kidney

disease or not (cyn),
20. Tobacco: whether the patient does tobacco or not (cyn),
21. Contact other covid: whether the patient had contact with

a person that has COVID-19 or not (cyn),
22. Covid res: patient’s COVID-19 test result (1: positive, 2:

negative, 3: awaiting results),
23. ICU: whether the patient needs ICU admission or not

(cyn).
The cyn means categorical yes or no. The labels provided for
that category are 1 for yes, 2 for no, and 97, 98, 99 for missing
values. Our model’s target will be the “ICU” column.

C. Data Preprocessing
Data preprocessing is done through several steps. The author

only takes the necessary data which later contains 67,414 rows
and 15 columns. The detailed preprocessing steps are listed and
explained below.

1. Convert 97, 98, 99 labelled data as np.nan so Pandas can
recognize null data through pd.DataFrame.isnull.

2. Change all “2” values to “0” as it is the more popular
convention.

3. ICU preprocessing: since the data is imbalanced (or
skewed), the author changes the ICU column value to
prioritized “1” if the patient has a valid date died. The
valid date died can be interpreted that the patient has died
while the invalid date died can be thought as the patient
has not died.

4. Create a new column named days after symptoms which
is created from subtracting date symptoms column
to entry date column.

5. Since we want to predict ICU from COVID-19 patients,
we only take patients that has “inpatient” status and has
tested positive for COVID-19. After that, drop the patient
type and covid res column.

6. Column id, date died, entry date, and date symptoms are
dropped because they are insignificant to the target

column.
7. Column pregnancy, other disease, and contact other

covid are dropped because they have many missing
values.

8. The rest missing values is dropped row-wise using
pd.Dataframe.dropna.

9. Cast the categorical column to object and numerical
column to either integer or float. This step is needed
because the tree is modelled to recognize categorical
value as object and numerical value as either float or int.

10. Lastly, data are split to 80% for training and 20% for
testing/validation data. The training data is resampled to
a 1:1 ratio in the target column using Borderline SMOTE
technique because the data is skewed. The validation data
are left as they are.

D. Decision Tree Implementation

The tree used in this problem is binary decision tree since all
categorical columns have only two classes. Before going into
the decision tree algorithm, the readers should know these
following terminologies.

1. Node: the three different types are root node, internal
nodes, and leaf nodes.

2. Branch: represent edge that connects two nodes.

Fig. 2.1 Tree nodes visualization [10]

3. Level: tree location relative to the root node. In this
paper, the root node has a level of 1.

4. Depth: maximum level of a tree.

Fig. 2.2 Tree level visualization [11]

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

5. Parent node: node which has one lower level than certain
node, e.g., in figure 2, node d is a parent of node g.

6. Child node: node which has one higher level than certain
node, e.g., in figure 2, node m is a child of node k.

7. Sibling node: node which has same level as certain node,
e.g., in figure 2, node e is a sibling of node f.

8. Subtree: trees are recursive. It is possible to contain a tree
in a tree, this is called subtree. In figure 3, subtree is the
circled area.

Fig. 2.3 Subtree visualization [11]

9. Pruning: reducing size of a tree by removing a subtree or
several subtrees. This technique is usually used to avoid
overfitting in training data.

CART Algorithm
CART stands for Classification and Regression Trees. It is

one of many algorithms to build the decision tree. The pruning
type used in this algorithm is pre-pruning using a single-pass
algorithm [11].

The algorithm will start from the root node and will grow
recursively until it fulfills the stopping criteria and produce leaf
nodes. In this study, the stopping criteria is either when the
information gain is less than or equal the tolerance or when the
maximum depth is reached. If it is not specified, the default
parameter is when the information gain is zero.

In each decision node, the data will be split based on a true or
false question. To generate the question, the tree will iterate
through all feature columns. Then, in each column, all unique
values will be tested as threshold.

For categorical values, the question will compare with the “=”
symbol and for numerical values, the question will compare with
the “≥” symbol. For instance, “Is age ≥ 32?” (numerical question
with threshold 32) and “Is the intubated = 1?” (categorical
question with threshold 1).

The question generated will partition the data into true and
false groups. The goal of this step is to filter the data until it is
less mixed, i.e., maximum data impurity reduction. The impurity
in each node is measured with Gini index which is defined in
node t as

𝑖(𝑡) = 1 − Σ௜ 𝑝ଶ(𝑗|𝑡) (1)
where 𝑗 is the class category and 𝑝(𝑗|𝑡) is the probability of class
j in node t.

The tree will also weigh the question by metrics called
information gain to see if the question is significant enough in
reducing the impurity. Information gain at node t is defined as

Δ𝑖(𝑠, 𝑡) = 𝑖(𝑡) − 𝑝் ⋅ 𝑖(𝑡்) − 𝑝ி ⋅ 𝑖(𝑡ி) (2)
where Δ𝑖(𝑠, 𝑡) is the decrease of impurity with split s, 𝑝் and 𝑝ி
are the probabilities of data going to true partition (true child
node) or false partition (false child node), i(𝑡்) and 𝑖(𝑡ி) are
Gini impurity at node 𝑡் and 𝑡ி respectively.

Fig. 2.4 CART algorithm flowchart

In this implementation, the root node and internal node class
type is a Decision Node, while leaf node has its own class type,
named Leaf. The decision node contains the type of question
(categorical or numerical), the question itself, and two children.
On the other side, the leaf contains the probability of each
classification to appear with certain feature inputs.

To predict the target, the tree will receive several feature
inputs and the tree will go through branches based on inputs until
it ends in a leaf node. Because the leaf node contains the
probability, it can output the probability of a class and it can also
determine which class has highest probability. The probability
output can be sorted descending by setting prioritized “1” class
in key parameter to help in solving this ICU admission problem.

E. Decision Tree Classifier Module

This section will explain more detailed specifications of the
decision tree classifier (DTC) module that the writer created.
The detailed descriptions of the class are as follows.

1. DecisionTreeClassifier
This is the main class of the module. The properties of
this class are root (class type: DecisionNode), depth, and
col_types to store all feature types. The methods are:
a. grow_tree: helper function to fit the data inputs and

grow the tree. This method works recursively and
the splitting data process happens here.

b. fit: to build a tree based on training data. This
method will combine the features and target and
transform it to np.array. This method will also
extract the column types (categorical/numerical).

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

c. predict: this method receives feature data. Users can
specify the “key” argument if they want the output
is in the form of probability (floating point).
Otherwise, it will output the class category that has
the highest probability.

d. print_tree: this method will output the tree structure
that has been fitted.

2. DecisionNode
This class will play a role as an internal node. The
properties are question, information gain, true child, and
false child. In the output, the true child is a left child and
the false child is a right child. The methods are:
a. classify: to predict one row at a time. This method

will output the class probability in Python dictionary
data structure (or hash table).

b. print_node: helper function to print the tree.
3. Leaf

This class has only one property and no methods. The
property is the target classes probability.

4. Question
The properties of this class are variable name, column
input, threshold, and isnumeric. The method is
a. match: to pass the data into either true or false

branch.
Other functions are not stated to reduce redundancy.

Limitations in The DTC Module
Below are some limitations to the DTC that was created.
1. The DTC can only split the data into two parts (binary).

This may cause the model works poorly on
multiclassification problem.

2. The DTC only accepts pd.DataFrame type. The user will
need to transform the data to pd.DataFrame type before
fitting it to the model.

3. The user needs to specify each column type explicitly,
i.e., casting to object for categorical columns and casting
to integer or float for numerical columns.

4. The DTC feature is not as complete as SciKit Learn’s
Decision Tree Classifier feature as this module only
facilitate maximum tree depth and information gain
tolerance as stopping criterion.

F. Evaluation Metrics

To evaluate model performance, the writer uses F1-score
since target data are imbalanced or skewed. The F1-score is
defined as

Precision =
୘୔

୘୔ା୊୔
 (3)

Recall =
୘୔

୘୔ା୊୒
 (4)

Fଵ = 2 ×
୔୰ୣୡ୧ୱ୧୭୬ × ୖୣୡୟ୪୪

୔୰ୣୡ୧ୱ୧୭୬ ା ୖୣୡୟ୪୪
=

ଶ୘୔

ଶ୘୔ା୊୔ା୊୒
 (5)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative. This metric will be tested in
validation data after fitting to the decision tree model.

III. RESULTS AND DISCUSSIONS

Before training data, the author tried several combinations of
preprocessing techniques to see which combination gave the
best result. The preprocessing written in II. B. are the ones that
are implemented to the data.

Data preprocessing impacts on training result
The data preprocessing impact can be summarized as follows.

ICU
Preprocessing

Resampling
Missing
Handler

F1-score

Yes Yes Drop 61.8%
Yes Yes Impute 61.6%
Yes No Drop 49.6%
Yes No Impute 49.2%
No No Drop 28.9%
No No Impute 29.5%
No Yes Drop 23.6%
No Yes Impute 23.6%

Table 3.1 Data preprocessing impact to F1-score in test data

From table 3.1, it can be inferred that the most significant
preprocessing is step three, the ICU preprocessing (refer to II.
B.). This is because the preprocessing helps to increase the
minority labels in the target column. Although this process
manipulated the target data, it is reasonable to say that the people
who already died and not admitted to the ICU should have been
cared in the ICU.

Fig. 3.1 Before ICU preprocessing

Fig. 3.2 After ICU preprocessing

Figure 3.1 and figure 3.2 show that the target ratio changed from
10:1 to 2:1. This will help the model to recognize the pattern.

The second most significant preprocess is resampling the data
with Borderline SMOTE. The data are resampled so the target
ratio changed from 2:1 to 1:1. The final ratio is determined
automatically from default parameter in Imblearn library.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

Fig 3.4 Final tree structure

Additionally, in handling missing data, the writer tried to use
imputer by filling the missing data with the most frequent value.
The most frequent method was chosen because the majority data
are categorical and hence, discrete. However, the author found
that dropping the missing values gave better result than imputing
them. Therefore, after applying the best preprocessing
combination, the writer successfully increased F1-score by
38.2%.

Model Evaluation
The first trial of training resulted in overfitting because the

tree performed well in training data, but performed poorly in test
data.

 Training Data Validation Data
Precision 89.9% 51.6%

Recall 87.8% 49.3%
F1-Score 88.8% 54.1%

Table 3.2 Evaluation scores with default parameter

To overcome the overfitting problem, the author pruned the
tree by testing several tree maximum depths to determine which
one is optimum for the validation data. The results are as
follows.

Maximum Tree Depth F1-score
2 60.8%
3 60.4%
4 61.8%
5 59.8%
6 60.7%
7 60.5%
8 60.2%
9 60.2%
10 60.0%
11 59.1%
12 59.2%
13 58.8%
14 58.2%
15 58.0%

Table 3.3 Max tree depth variations and F1-score on test data

From table 3.3, we can see the best validation F1-score is
61.8% with a maximum tree depth of 4. The statistics are:

 Training Data Validation Data
Precision 62.0% 53.6%

Recall 67.0% 72.8%
F1-Score 64.4% 61.8%

Table 3.4 Evaluation scores with max tree depth = 4

By comparing the statistics from table 3.4, it is safe to say that
the tree did not overfit the training data. The reason is that the
gap between F1-score training data and F1-score validation data
only differs about 2.6%. It is due to the pruning done to the tree
that avoids overfitting.

Having only 61.8% F1-score, the decision tree may not be a
good solution to help medical staff with ICU admissions. This
is because the model will tend to give errors rather than the
desired outcome. To see the problem, the author also provides
confusion matrix plot as follows.

Fig 3.5 Confusion matrix for validation data

Remember that the prioritized patient is labeled as 1 (positive)
while non-prioritized is labeled as 0 (negative). From figure 3.5
plot, we can see that the false positive has a relatively high value
(approx. 24.8% of the test data). This fact can also be seen
through the low precision score.

With current performance, the decision tree can misclassify
labels and prioritize people who actually do not need an ICU
admission. This is not what we wanted since it will waste bed
occupancies in the hospitals.

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2021/2022

On the other side, if we look at the tree structure in figure 3.4,
several questions are asked repeatedly. The author presumes that
this may be one of the problems that caused the poor tree
performance. The tree does not consider all features, whereas in
fact, the COVID-19 patient’s symptoms severity and health
condition are dependent on comorbid, such as hypertension and
cardiovascular disease [12]. Hence, affecting the needs of
intensive care.

Furthermore, when inspecting the right subtree of node “Is
age ≥ 52?”, we see that the leaves tend to predict patients as the
prioritized ones (higher 1 class probability). It turns out that
most of the tree false positive values are coming from these.
There are 3,133 rows of not intubated patients and has the age
above 52, which should be predicted false, but predicted true
(prioritized) by the tree. Therefore, this shows that the decision
tree has a high bias to such situation.

Besides that, the decision tree root has very low information
gain on the data (approximately 0.02). This means that it is hard
for the tree to filter the data because the Gini impurity is high.
One possible factor that caused this is target may need to be
decided with several questions combined at the same time, not
one question at a time like the tree did.

IV. CONCLUSION

To conclude, the tree has 61.8% F1-score with 72.8% recall
and 53.6% precision score. Compared to the existing method
from Cotoy, et al., the tree F1-score differs by 17.2% with the
ANN method being the highest of the two. It shows that the
decision tree may not be the best solution to implement in ICU
admission task, although it depends on the performance error
tolerance.

Nevertheless, further research can be done with different
preprocessing, different data, or different models. In this paper,
the majority of columns of the data are categorical. Therefore,
more data with numerical values can be collected and tested.
Specified data such as patients’ blood pressure, cholesterol, or
oxygen rate may correlate more to ICU admission requirements.
Additionally, the target does not have to be categorical. It can be
numerical, but a certain threshold should be determined.

VI. ACKNOWLEDGMENT

The author would like to gratitude for the help provided by
Dr. Nur Ulfa Maulidevi, S.T., M. Sc. as Discrete Mathematics
Instructor, Dr. Rinaldi Munir, M. T. as Discrete Mathematics
Coordinator, and Stanley Yoga as mentor. The author would
also like to thank friends and family who support the author
throughout the study at Institut Teknologi Bandung.

REFERENCES

[1] World Health Organization. (2021, December 12). WHO Coronavirus
(COVID-19) Dashboard. Retrieved from WHO: https://covid19.who.int/.
Accessed at 11th December 2021, 17.15 GMT+7.
[2] World Health Organization. (n.d.). Coronavirus. Retrieved from WHO:
https://www.who.int/health-topics/coronavirus. Accessed at 11th December
2021, 18.05 GMT+7.
[3] Hajjar, et al. (2021). Intensive Care Management of Patients with COVID-
19: A Practical Approach. Annals of Intensive Care.

[4] Mishra, et al. (2017). Role of Artificial Intelligence in Health Care.
Biochemistry Indian Journal.
[5] Rokarch, L., & Maimon, O. (2008). Data Mining with Decision Trees:
Theory and Applications. Singapore: World Scientific Publishing Co.
[6] Cotoy, et al. (2021). Predicting Intensive Care Unit (ICU) Requirement in
COVID-19 With Artificial Neural Network. Easy Chair.
[7] Seif, G. (2018, April 4). Deep Learning vs Classical Machine Learning.
Retrieved from Towards Data Science: https://towardsdatascience.com/deep-
learning-vs-classical-machine-learning-9a42c6d48aa. Accessed at 11th
December 2021, 19.47 GMT+7.
[8] Mukherjee, T. (2020, July 22). COVID-19 Patient Precondition Dataset.
Retrieved from Kaggle: https://www.kaggle.com/tanmoyx/covid19-patient-
precondition-dataset/metadata. Accessed at 11th December 2021, 08.22 GMT+7.
[9] Gobierno de Mexico. (2020). Datos Abiertos Dirección General de
Epidemiología. Retrieved from https://www.gob.mx/salud/documentos/datos-
abiertos-152127. Accessed at 11th December 2021, 08.22 GMT+7.
[10] Alberto, et al. (2011). Lightning Forecast Using Data Mining Techniques
On Hourly Evolution Of The Convective Available Potential Energy. 10th
Brazilian Congress on Computational Intelligence, (p. 3). Brazil.
[11] Munir, R. (2020). Pohon Bagian 2. Retrieved from
https://informatika.stei.itb.ac.id/~rinaldi.munir/. Accessed at 12th December
2021, 14.33 GMT+7.
[12] Song, Y.-Y., & Lu, Y. (2015). Decision Tree Methods: Applications for
Classification. Shanghai Archives of Psychiatry, 130-135.
[13] Sanyaolu, et al. (2020). Comorbidity and Its Impact on Patients with
COVID-19. SN Comprehensive Clinical Medicine, 1-8.
[14] Gordon, J. (2017, September 14). Let’s Write a Decision Tree Classifier
from Scratch – Machine Learning Recipes #8.
[15] Breiman, et al. (1998). Classification and Regression Trees. Florida: CRC
Press.

DECLARATION

I hereby declare that this research paper is my own writing,
not an adaptation, translation, or plagiarism.

Palembang, 14th December 2021

Maria Khelli

13520115

